Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.120
Filtrar
1.
Oncotarget ; 15: 248-254, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588464

RESUMO

Acute myeloid leukemia (AML) is characterized by the rapid proliferation of mutagenic hematopoietic progenitors in the bone marrow. Conventional therapies include chemotherapy and bone marrow stem cell transplantation; however, they are often associated with poor prognosis. Notably, growth hormone-releasing hormone (GHRH) receptor antagonist MIA-602 has been shown to impede the growth of various human cancer cell lines, including AML. This investigation examined the impact of MIA-602 as monotherapy and in combination with Doxorubicin on three Doxorubicin-resistant AML cell lines, KG-1A, U-937, and K-562. The in vitro results revealed a significant reduction in cell viability for all treated wild-type cells. Doxorubicin-resistant clones were similarly susceptible to MIA-602 as the wild-type counterpart. Our in vivo experiment of xenografted nude mice with Doxorubicin-resistant K-562 revealed a reduction in tumor volume with MIA-602 treatment compared to control. Our study demonstrates that these three AML cell lines, and their Doxorubicin-resistant clones, are susceptible to GHRH antagonist MIA-602.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Leucemia Mieloide Aguda , Sermorelina/análogos & derivados , Camundongos , Animais , Humanos , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Doxorrubicina/farmacologia
2.
Gene ; 907: 148283, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38354915

RESUMO

BACKGROUND: Isolated growth hormone deficiency (IGHD) is a rare genetically heterogeneous disorder caused primarily by mutations in GH1 and GH releasing hormone receptor (GHRHR). The aim of this study was to identify the molecular etiology of a Chinese boy with IGHD. METHODS: Whole-exome sequencing, sanger sequencing and bioinformatic analysis were performed to screen for candidate mutations. The impacts of candidate mutation on gene expression, intracellular localization and protein function were further evaluated by in vitro assays. RESULTS: A novel heterozygous frameshift mutation in the GHRH gene (c.91dupC, p.R31Pfs*98) was identified in a Chinese boy clinically diagnosed as having IGHD. The mutation was absent in multiple public databases, and considered as deleterious using in silico prediction, conservative analysis and three-dimensional homology modeling. Furthermore, mRNA and protein expression levels of mutant GHRH were significantly increased than wild-type GHRH (p < 0.05). Moreover, mutant GHRH showed an aberrant accumulation within the cytoplasm, and obviously reduced ability to stimulate GH secretion and cAMP accumulation in human GHRHR-expressing pituitary GH3 cells compared to wild-type GHRH (p < 0.05). CONCLUSION: Our study discovered the first loss-of function mutation of GHRH in a Chinese boy with IGHD and provided new insights on IGHD pathogenesis caused by GHRH haploinsufficiency.


Assuntos
Nanismo Hipofisário , Hormônio Liberador de Hormônio do Crescimento , Hormônio do Crescimento Humano , Humanos , Masculino , China , Nanismo Hipofisário/genética , Mutação da Fase de Leitura , Hormônio do Crescimento , Hormônio do Crescimento Humano/genética , Mutação , Receptores de Neuropeptídeos/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Hormônio Liberador de Hormônio do Crescimento/genética , População do Leste Asiático/genética
4.
Cytokine ; 173: 156416, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37952313

RESUMO

GHRH regulates the secretion of GH from the anterior pituitary gland. An emerging body of evidence suggests that the activities of that neuropeptide are not limited to the GH/IGF-I axis, but they expand towards the mediation of inflammatory processes. GHRHAnt were developed to oppose the activities of GHRH in malignancies, and have been associated with strong anti-inflammatory and anti-oxidative effects in a diverse variety of tissues, including the lungs. In the present study we report that GHRHAnt oppose interferon-γ - induced paracellular hyperpermeability and reactive oxygen species generation in bovine and human pulmonary endothelial cells; and suppress interferon-γ - triggered STAT3, cofilin and ERK1/2 activation. Our observations substantiate previous findings on the protective effects of GHRHAnt in endothelial inflammation and barrier break-down.


Assuntos
Hormônio do Crescimento , Adeno-Hipófise , Humanos , Animais , Bovinos , Interferon gama/farmacologia , Células Endoteliais , Hormônio Liberador de Hormônio do Crescimento/farmacologia
5.
Cells ; 12(22)2023 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-37998350

RESUMO

Growth hormone (GH)-releasing hormone (GHRH) has been suggested to play a crucial role in brain function. We aimed to further investigate the effects of a novel GHRH antagonist of the Miami (MIA) series, MIA-602, on emotional disorders and explore the relationships between the endocrine system and mood disorders. In this context, the effects induced by MIA-602 were also analyzed in comparison to vehicle-treated mice with GH deficiency due to generalized ablation of the GHRH gene (GHRH knock out (GHRHKO)). We show that the chronic subcutaneous administration of MIA-602 to wild type (+/+) mice, as well as generalized ablation of the GHRH gene, is associated with anxiolytic and antidepressant behavior. Moreover, immunohistochemical and Western blot analyses suggested an evident activation of Nrf2, HO1, and NQO1 in the prefrontal cortex of both +/+ mice treated with MIA-602 (+/+ MIA-602) and homozygous GHRHKO (-/- control) animals. Finally, we also found significantly decreased COX-2, iNOS, NFkB, and TNF-α gene expressions, as well as increased P-AKT and AKT levels in +/+ MIA-602 and -/- control animals compared to +/+ mice treated with vehicle (+/+ control). We hypothesize that the generalized ablation of the GHRH gene leads to a dysregulation of neural pathways, which is mimicked by GHRH antagonist treatment.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Homozigoto
6.
Aging Cell ; 22(12): e13985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667562

RESUMO

Our previous research has demonstrated that mice lacking functional growth hormone-releasing hormone (GHRH) exhibit distinct physiological characteristics, including an extended lifespan, a preference for lipid utilization during rest, mild hypoglycemia, and heightened insulin sensitivity. They also show a further increase in lifespan when subjected to caloric restriction. These findings suggest a unique response to fasting, which motivated our current study on the response to glucagon, a key hormone released from the pancreas during fasting that regulates glucose levels, energy expenditure, and metabolism. Our study investigated the effects of an acute glucagon challenge on female GHRH knockout mice and revealed that they exhibit reduced glucose production, likely due to suppressed gluconeogenesis. However, these mice showed an increase in energy expenditure. We also observed alterations in pancreatic islet architecture, with smaller islets and a reduction of insulin-producing beta cells but no changes in glucagon-producing alpha cells. Additionally, the analysis of hepatic glucagon signaling showed a decrease in glucagon receptor expression and phosphorylated CREB. In conclusion, our findings suggest that the unique metabolic phenotype observed in these long-lived mice may be partly explained by changes in glucagon signaling. Further exploration of this pathway may lead to new insights into the regulation of longevity in mammals.


Assuntos
Glucagon , Longevidade , Feminino , Camundongos , Animais , Glucagon/metabolismo , Glucagon/farmacologia , Camundongos Knockout , Longevidade/genética , Insulina/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Glucose/metabolismo , Mamíferos/metabolismo
7.
Biomed Chromatogr ; 37(12): e5741, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688464

RESUMO

Matrix effect and sample pretreatment significantly affect the percentage recovery of peptides in biological matrices, affecting the method robustness and accuracy. To counteract this effect, an internal standard (IS) is used; however, in most cases this is not available, which limits the analytical method. It is important to identify short peptides that can be used as ISs in the quantification of peptides in biological matrices. In this study, doping peptides GHRP-4, GHRP-5, GHRP-6, Sermorelin (1-11), Sermorelin (13-20) and Sermorelin (22-29) were synthesized using solid-phase peptide synthesis. Treatment with human blood, trypsin and chymotrypsin was used to determine the stability of the peptides. Products were evaluated using the high-performance liquid chromatography-diode array detector (HPLC-DAD) method. The analytical methodology and sample pretreatment were effective for the analysis of these molecules. A unique profile related to protein binding and enzymatic stability of each peptide was established. GHRP-4, GHRP-6 and Sermorelin (22-29) can be considered as in-house ISs as they were stable to enzyme and blood treatment and can be used for the quantification of peptides in biological samples. Peptides GHRP-6 and Sermorelin (22-29) were used to analyse a dimeric peptide (26 [F] LfcinB (20-30)2 ) in four different matrices to test these peptides as in-house IS.


Assuntos
Testes de Química Clínica , Doping nos Esportes , Hormônio Liberador de Hormônio do Crescimento , Substâncias de Crescimento , Peptídeos/análise , Humanos , Soro/química , Estabilidade Proteica , Análise Química do Sangue/normas , Testes de Química Clínica/normas , Hormônio Liberador de Hormônio do Crescimento/análise , Substâncias de Crescimento/análise
8.
PLoS One ; 18(8): e0290867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651371

RESUMO

INTRODUCTION: Medical colleges globally have student organizations that serve to enable students' involvement in research. However, details of their approach and activities are seldom published to serve as learning for student organizations in other settings. The Student Research Forum (SRF), a student organization based at a private medical school in Pakistan aims to facilitate students in acquiring research skills. Following the observation of a downward trajectory of student initiative and interest, SRF leadership restructured the organization and improve its impact. This study describes the development and implementation evaluation of the interventions. METHODOLOGY: The operational framework was revised using the Theory of Change by the core group. Major interventions included enhanced social media and outreach coordination, research workshops, journal clubs, and mentorship to increase research output, mentorship opportunities, and knowledge of medical research; ultimately improving quality in research. The outcomes generated over the course of the study's duration from July 2019 to September 2021 were analyzed using the process metrics of reach, adoption, and efficacy. RESULTS: As a result of the interventions, SRF expanded its reach by conducting a total of 41 events during the duration of the study, facilitated by social media growth on each of SRF's online platforms, with a 300% increase in followers on Facebook, and a nationwide network of 91 student ambassadors. An annual workshop series taught research skills to more than 3800 participants. Students leading their own events, SRF featuring international speakers, and the abstracts submitted to SRF's annual conference, along with the conference's reach of 10,000 students, are seen as improvements in the ToC-informed interventions' adoption. The efficacy of the interventions manifested as the REACH program allocated 56 research projects to vetted applicants. CONCLUSION: The applied interventions have accelerated SRF's progress towards achieving its long-term outcome of increased quality in research as translated by increased research output quantity, mentorship, and knowledge of medical research. Further evaluation is required to assess the success of the ToC. As SRF continues to grow, a continued analysis of the implementation outcomes is imperative to gauge its effectiveness.


Assuntos
Pesquisa Biomédica , Estudantes de Medicina , Humanos , Benchmarking , Impulso (Psicologia) , Hormônio Liberador de Hormônio do Crescimento
9.
Front Immunol ; 14: 1231363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649486

RESUMO

COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1ß, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1ß secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Células Endoteliais , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Inflamação/tratamento farmacológico , Leucócitos Mononucleares , Lipopolissacarídeos , SARS-CoV-2 , Fator de Necrose Tumoral alfa
10.
Exp Lung Res ; 49(1): 152-164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584484

RESUMO

Purpose: Growth hormone-releasing hormone (GHRH) is a 44-amino acid peptide that regulates growth hormone (GH) secretion. We hypothesized that GHRH receptor (GHRH-R) in alveolar type 2 (AT2) cells could modulate pro-inflammatory and possibly subsequent pro-fibrotic effects of lipopolysaccharide (LPS) or cytokines, such that AT2 cells could participate in lung inflammation and fibrosis. Methods: We used human alveolar type 2 (iAT2) epithelial cells derived from induced pluripotent stem cells (iPSC) to investigate how GHRH-R modulates gene and protein expression. We tested iAT2 cells' gene expression in response to LPS or cytokines, seeking whether these mechanisms caused endogenous production of pro-inflammatory molecules or mesenchymal markers. Quantitative real-time PCR (RT-PCR) and Western blotting were used to investigate differential expression of epithelial and mesenchymal markers. Result: Incubation of iAT2 cells with LPS increased expression of IL1-ß and TNF-α in addition to mesenchymal genes, including ACTA2, FN1 and COL1A1. Alveolar epithelial cell gene expression due to LPS was significantly inhibited by GHRH-R peptide antagonist MIA-602. Incubation of iAT2 cells with cytokines like those in fibrotic lungs similarly increased expression of genes for IL1-ß, TNF-α, TGFß-1, Wnt5a, smooth muscle actin, fibronectin and collagen. Expression of mesenchymal proteins, such as N-cadherin and vimentin, were also elevated after prolonged exposure to cytokines, confirming epithelial production of pro-inflammatory molecules as an important mechanism that might lead to subsequent fibrosis. Conclusion: iAT2 cells clearly expressed the GHRH-R. Exposure to LPS or cytokines increased iAT2 cell production of pro-inflammatory factors. GHRH-R antagonist MIA-602 inhibited pro-inflammatory gene expression, implicating iAT2 cell GHRH-R signaling in lung inflammation and potentially in fibrosis.


Assuntos
Pneumonia , Fibrose Pulmonar , Humanos , Células Epiteliais Alveolares/metabolismo , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Inflamação , Citocinas
11.
Neuroscience ; 529: 73-87, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572878

RESUMO

The ventromedial hypothalamic nucleus (VMN) controls glucose counter-regulation, including pituitary growth hormone (GH) secretion. VMN neurons that express the transcription factor steroidogenic factor-1/NR5A1 (SF-1) participate in glucose homeostasis. Research utilized in vivo gene knockdown tools to determine if VMN growth hormone-releasing hormone (Ghrh) regulates hypoglycemic patterns of glucagon, corticosterone, and GH outflow according to sex. Intra-VMN Ghrh siRNA administration blunted hypoglycemic hypercorticosteronemia in each sex, but abolished elevated GH release in males only. Single-cell multiplex qPCR showed that dorsomedial VMN (VMNdm) Ghrh neurons express mRNAs encoding Ghrh, SF-1, and protein markers for glucose-inhibitory (γ-aminobutyric acid) or -stimulatory (nitric oxide; glutamate) neurotransmitters. Hypoglycemia decreased glutamate decarboxylase67 (GAD67) transcripts in male, not female VMNdm Ghrh/SF-1 neurons, a response that was refractory to Ghrh siRNA. Ghrh gene knockdown prevented, in each sex, hypoglycemic down-regulation of Ghrh/SF-1 nerve cell GAD65 transcription. Ghrh siRNA amplified hypoglycemia-associated up-regulation of Ghrh/SF-1 neuron nitric oxide synthase mRNA in male and female, without affecting glutaminase gene expression. Ghrh gene knockdown altered Ghrh/SF-1 neuron estrogen receptor-alpha (ERα) and ER-beta transcripts in hypoglycemic male, not female rats, but up-regulated GPR81 lactate receptor mRNA in both sexes. Outcomes infer that VMNdm Ghrh/SF-1 neurons may be an effector of SF-1 control of counter-regulation, and document Ghrh modulation of hypoglycemic patterns of glucose-regulatory neurotransmitter along with estradiol and lactate receptor gene transcription in these cells. Co-transmission of glucose-inhibitory and -stimulatory neurochemicals of diverse chemical structure, spatial, and temporal profiles may enable VMNdm Ghrh neurons to provide complex dynamic, sex-specific input to the brain glucose-regulatory network.


Assuntos
Glucose , Hipoglicemia , Ratos , Feminino , Masculino , Animais , Glucose/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Ratos Sprague-Dawley , Glicogênio/metabolismo , Hipoglicemia/metabolismo , Neurônios/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipoglicemiantes , RNA Mensageiro/metabolismo , Lactatos/metabolismo , RNA Interferente Pequeno/metabolismo
12.
Biochem Biophys Res Commun ; 676: 121-131, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506473

RESUMO

Neonatal malnutrition is one of the most common causes of neurological disorders. However, the mechanism of action of the factors associated with neonatal nutrition in the brain remains unclear. In this study, we focused on fibroblast growth factor (FGF) 21 to elucidate the effects of malnutrition on the neonatal brain. FGF21 is an endocrine factor produced by the liver during lactation which is the main source of nutrition during the neonatal period. In this study, malnourishment during nursing mice induced decreased levels of Fgf21 mRNA in the liver and decreased levels of FGF21 in the serum. RNA-seq analysis of neonatal mouse brain tissue revealed that FGF21 controlled the expression of Kalrn-201 in the neonatal mouse brain. Kalrn-201 is a transcript of Kalirin, a Ras homologous guanine nucleotide exchange factor at the synapse. In mouse neurons, FGF21 induced the expression of Kalirin-7 (a Kalirin isoform) by down-regulating Kalrn-201. FGF21-induced Kalirin-7 stimulated neurite outgrowth in Neuro-2a cells. FGF21 also induced Growth hormone-releasing hormone (GHRH) expression in Neuro-2a cells. Kalirin-7 and GHRH expression induced by FGF21 was altered by inhibiting the activity of SH2-containing tyrosine phosphatase (SHP2) which is located downstream of the FGF receptor (FGFR). Additionally, malnourished nursing induced intron retention of the SHP2 gene (Ptpn11), resulting in the alteration of Kalirin-7 and GHRH expression by FGF21 signaling. Ptpn11 intron retention is suggested to be involved in regulating SHP2 activity. Taken together, these results suggest that FGF21 plays a critical role in the induction of neuronal neurite outgrowth and GHRH secretion in the neonatal brain, and this mechanism is regulated by SHP2. Thus, Ptpn11 intron retention induced by malnourished nursing may be involved in SHP2 activity.


Assuntos
Fatores de Crescimento de Fibroblastos , Desnutrição , Camundongos , Animais , Animais Recém-Nascidos , Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/metabolismo , Desnutrição/metabolismo , Crescimento Neuronal , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Encéfalo/metabolismo
13.
Nat Commun ; 14(1): 3298, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280225

RESUMO

Dysregulation of Th17 cell differentiation and pathogenicity contributes to multiple autoimmune and inflammatory diseases. Previously growth hormone releasing hormone receptor (GHRH-R) deficient mice have been reported to be less susceptible to the induction of experimental autoimmune encephalomyelitis. Here, we show GHRH-R is an important regulator of Th17 cell differentiation in Th17 cell-mediated ocular and neural inflammation. We find that GHRH-R is not expressed in naïve CD4+ T cells, while its expression is induced throughout Th17 cell differentiation in vitro. Mechanistically, GHRH-R activates the JAK-STAT3 pathway, increases the phosphorylation of STAT3, enhances both non-pathogenic and pathogenic Th17 cell differentiation and promotes the gene expression signatures of pathogenic Th17 cells. Enhancing this signaling by GHRH agonist promotes, while inhibiting this signaling by GHRH antagonist or GHRH-R deficiency reduces, Th17 cell differentiation in vitro and Th17 cell-mediated ocular and neural inflammation in vivo. Thus, GHRH-R signaling functions as a critical factor that regulates Th17 cell differentiation and Th17 cell-mediated autoimmune ocular and neural inflammation.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Camundongos , Animais , Transdução de Sinais/fisiologia , Inflamação/metabolismo , Diferenciação Celular/genética , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Camundongos Endogâmicos C57BL
14.
J Gerontol A Biol Sci Med Sci ; 78(Suppl 1): 38-43, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37325967

RESUMO

The discovery of the growth hormone secretagogues (GHS) and the reverse pharmacology leading to the discovery of GHS receptor which enabled the identification of ghrelin as the natural ligand for the receptor have opened a new horizon in growth hormone (GH) physiology, pathophysiology, and therapeutics. Major progress has been made and we now have orally active GHS which are able to restore optimal pulsatile GH secretion which cannot be overstimulated as insulin-like growth factor feedback regulates the peaks to the optimum level. This enables GH to be restored in the older to levels normally seen in 20- to 30-year-old people; this leads to an increase in fat-free mass and redistribution of fat to the limbs. As these agents are ultimately approved and investigated further, it is likely that they will be shown to restore growth in children with moderate-to-mild GH deficiency; their benefits will be investigated in other indications such as nonalcoholic fatty liver disease, frailty, anemia, osteoporosis, and immune compromise in older subjects. The exquisite regulation of GH secretion reflects the importance of GH pulsatility in the regulation of somatotroph action of GH.


Assuntos
Grelina , Hormônio do Crescimento Humano , Idoso , Humanos , Hormônio do Crescimento , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hormônio Liberador de Hormônio do Crescimento/fisiologia , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/uso terapêutico , Secretagogos , Adulto Jovem
15.
Growth Horm IGF Res ; 71: 101545, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295337

RESUMO

OBJECTIVE: The growth hormone (GH)-releasing peptide-2 (GHRP-2) test is relatively safe among endocrine stimulation tests for the elderly. We investigated whether anterior pituitary function in elderly patients could be assessed on the basis of GH response to the GHRP-2 test. DESIGN: Sixty-five elderly patients aged 65 years and older with non-functioning pituitary neuroendocrine tumor (PitNET) who underwent pituitary surgery and preoperative endocrine stimulation tests were classified into the "GH normal group" and "GH deficiency group" based on GH response to the GHRP-2 test. The baseline characteristics and anterior pituitary function were compared between the groups. RESULTS: Thirty-two patients were assigned to the GH normal group and 33 to the GH deficiency group. The cortisol and adrenocorticotropic hormone (ACTH) results in the corticotropin-releasing hormone test were significantly higher in the GH normal group than in the GH deficiency group (p < 0.001). The relationship between the cortisol and ACTH results and the GH response revealed significant correlations (p < 0.001). In addition, receiver operating characteristic curve analysis identified that the optimal cut-off point for a peak GH level in the correlation between adrenocortical function and GH response to the GHRP-2 test was 8.08 ng/mL (specificity 0.868, sensitivity 0.852). CONCLUSION: The present study indicated that adrenocortical function was significantly correlated with GH response to the GHRP-2 test in elderly patients before pituitary surgery. For elderly patients with non-functioning PitNET, GH response to the GHRP-2 test may support in diagnosing adrenocortical insufficiency.


Assuntos
Hormônio do Crescimento Humano , Hipopituitarismo , Doenças da Hipófise , Neoplasias Hipofisárias , Idoso , Humanos , Hormônio do Crescimento , Hidrocortisona , Hormônio Liberador de Hormônio do Crescimento , Hormônio Adrenocorticotrópico , Hipopituitarismo/diagnóstico
16.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175738

RESUMO

Leptin is an adipokine with a pleiotropic impact on many physiological processes, including hypothalamic-pituitary-somatotropic (HPS) axis activity, which plays a key role in regulating mammalian metabolism. Leptin insensitivity/resistance is a pathological condition in humans, but in seasonal animals, it is a physiological adaptation. Therefore, these animals represent a promising model for studying this phenomenon. This study aimed to determine the influence of leptin on the activity of the HPS axis. Two in vivo experiments performed during short- and long-day photoperiods were conducted on 12 ewes per experiment, and the ewes were divided randomly into 2 groups. The arcuate nucleus, paraventricular nucleus, anterior pituitary (AP) tissues, and blood were collected. The concentration of growth hormone (GH) was measured in the blood, and the relative expression of GHRH, SST, GHRHR, SSTR1, SSTR2, SSTR3, SSTR5, LEPR, and GH was measured in the collected brain structures. The study showed that the photoperiod, and therefore leptin sensitivity, plays an important role in regulating HPS axis activity in the seasonal ewe. However, leptin influences the release of GH in a season-dependent manner, and its effect seems to be targeted at the posttranscriptional stages of GH secretion.


Assuntos
Hormônio do Crescimento , Hormônio do Crescimento Humano , Animais , Feminino , Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento , Leptina/metabolismo , Mamíferos/metabolismo , Fotoperíodo , Ovinos
17.
Growth Horm IGF Res ; 69-70: 101534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37210756

RESUMO

Growth Hormone-Releasing Hormone (GHRH) is a hypothalamic peptide which regulates the release of Growth Hormone from the anterior pituitary gland, and has been involved in inflammatory processes. On the other hand, GHRH antagonists (GHRHAnt) were developed to counteract those effects. Herein we demonstrate for the first time that GHRHAnt can suppress hydrogen peroxide (H2O2) - induced paracellular hyperpermeability in bovine pulmonary artery endothelial cells. Increased production of reactive oxygen species (ROS) and barrier dysfunction have been associated with the development of potentially lethal disorders, including sepsis and acute respiratory distress syndrome (ARDS). Our study supports the protective actions of GHRHAnt in the impaired endothelium, and suggests that those compounds represent an exciting therapeutic possibility towards lung inflammatory disease.


Assuntos
Células Endoteliais , Peróxido de Hidrogênio , Animais , Bovinos , Peróxido de Hidrogênio/farmacologia , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hormônio do Crescimento , Pulmão
18.
J Endocrinol Invest ; 46(10): 2175-2183, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37062055

RESUMO

INTRODUCTION: The proportion of patients with low GH response to provocative tests increases with the number of other pituitary hormone deficiencies, reason why in panhypopituitary patients GH stimulation tests may be unnecessary to diagnose GH deficiency (GHD) PURPOSE: To re-evaluate the diagnostic cut-offs of GH response to GHRH + arginine (ARG) test related to BMI, considering the patients' pituitary function as the gold standard for the diagnosis of GHD. METHODS: The GH responses to GHRH + ARG were studied in 358 patients with history of hypothalamic-pituitary disease. GHD was defined by the presence of at least 3 other pituitary deficits (n = 223), while a preserved somatotropic function was defined by the lack of other pituitary deficits and an IGF-I SDS ≥ 0 (n = 135). The cut-off with the best sensitivity (SE) and specificity (SP), was identified for each BMI category using the ROC curve analysis. To avoid over-diagnosis of GHD we subsequently searched for the cut-offs with a SP ≥ 95%. RESULTS: The best GH cut-off was 8.0 µg/l (SE 95%, SP 100%) in lean, 7.0 µg/l (SE 97.3%, SP 82.8%) in overweight, and 2.8 µg/l (SE 84.3%, SP 91.7%) in obese subjects. The cut-off with a SP ≥ 95% was 2.6 µg/l (SE 68.5%, SP 96.6%) in overweight and 1.75 µg/l (SE 70.0%, SP 97.2%) in obese subjects. CONCLUSIONS: This is the first study that evaluates the diagnostic cut-offs of GH response to GHRH + ARG related to BMI using a clinical definition of GHD as gold standard. Our results suggest that with this new approach, the GHRH + ARG cut-offs should be revised to avoid GHD over-diagnosis.


Assuntos
Nanismo Hipofisário , Hormônio do Crescimento Humano , Doenças da Hipófise , Humanos , Índice de Massa Corporal , Sobrepeso/complicações , Hormônio Liberador de Hormônio do Crescimento , Arginina
19.
Environ Toxicol Pharmacol ; 99: 104113, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36940786

RESUMO

Growth hormone-releasing hormone (GHRH) regulates the synthesis of growth hormone from the anterior pituitary gland, and it is involved in inflammatory responses. On the other hand, GHRH antagonists (GHRHAnt) exhibit the opposite effects, resulting in endothelial barrier enhancement. Exposure to hydrochloric acid (HCL) is associated with acute and chronic lung injury. In this study, we investigate the effects of GHRHAnt in HCL-induced endothelial barrier dysfunction, utilizing commercially available bovine pulmonary artery endothelial cells (BPAEC). Cell viability was measured by utilizing 3-(4,5-dimethylthiazol2-yl)- 2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, fluorescein isothiocyanate (FITC)-dextran was used to assess barrier function. Our observations suggest that GHRHAnt exert protective effects against HCL-induced endothelial breakdown, since those peptides counteract HCL-triggered paracellular hyperpermeability. Based on those findings, we propose that GHRHAnt represent a new therapeutic approach towards HCL-induced endothelial injury.


Assuntos
Ácido Clorídrico , Lesão Pulmonar , Animais , Bovinos , Ácido Clorídrico/toxicidade , Ácido Clorídrico/metabolismo , Células Endoteliais , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Pulmão , Lesão Pulmonar/metabolismo , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia
20.
J Pept Sci ; 29(9): e3487, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36898693

RESUMO

The treatment of hard-to-heal chronic wounds is still a major medical problem and an economic and social burden. In this work, we examine the proregenerative potential of two peptides, G11 (a trypsin-resistant analogue of growth hormone-releasing hormone [GHRH]) and biphalin (opioid peptide), and their combination in vitro on human fibroblasts (BJ). G11, biphalin and their combination exhibited no toxicity against BJ cells. On the contrary, these treatments significantly stimulated proliferation and migration of fibroblasts. Under inflammatory conditions (LPS-induced BJ cells), we noticed that the tested peptides decreased the levels of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and interleukin 1ß (IL-1ß). This was correlated with diminished phosphorylation levels of p38 kinase, but not those of ERK1/2. We found also that G11, biphalin and their combination activated the ERK1/2 signalling pathway, which has been previously implicated in promigratory activity of some regeneration enhancers, including opioids or GHRH analogues. Potential application of their combination requires further work, in particular in vivo experiments, in which the organism-level relevance of the discussed cell-level effects would be proven and, additionally, analgesic action of the opioid ingredient could be quantified.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Peptídeos Opioides , Humanos , Peptídeos Opioides/farmacologia , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Cicatrização , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...